3.229 \(\int \frac{(a+a \sec (c+d x))^{3/2}}{\sec ^{\frac{3}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=79 \[ \frac{8 a^2 \sin (c+d x) \sqrt{\sec (c+d x)}}{3 d \sqrt{a \sec (c+d x)+a}}+\frac{2 a \sin (c+d x) \sqrt{a \sec (c+d x)+a}}{3 d \sqrt{\sec (c+d x)}} \]

[Out]

(8*a^2*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(3*d*Sqrt[a + a*Sec[c + d*x]]) + (2*a*Sqrt[a + a*Sec[c + d*x]]*Sin[c +
 d*x])/(3*d*Sqrt[Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.108923, antiderivative size = 79, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.08, Rules used = {3809, 3804} \[ \frac{8 a^2 \sin (c+d x) \sqrt{\sec (c+d x)}}{3 d \sqrt{a \sec (c+d x)+a}}+\frac{2 a \sin (c+d x) \sqrt{a \sec (c+d x)+a}}{3 d \sqrt{\sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Sec[c + d*x])^(3/2)/Sec[c + d*x]^(3/2),x]

[Out]

(8*a^2*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(3*d*Sqrt[a + a*Sec[c + d*x]]) + (2*a*Sqrt[a + a*Sec[c + d*x]]*Sin[c +
 d*x])/(3*d*Sqrt[Sec[c + d*x]])

Rule 3809

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(a*Co
t[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^n)/(f*m), x] + Dist[(b*(2*m - 1))/(d*m), Int[(a + b*C
sc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0]
&& EqQ[m + n, 0] && GtQ[m, 1/2] && IntegerQ[2*m]

Rule 3804

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Simp[(-2*a*Co
t[e + f*x])/(f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]]), x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^
2, 0]

Rubi steps

\begin{align*} \int \frac{(a+a \sec (c+d x))^{3/2}}{\sec ^{\frac{3}{2}}(c+d x)} \, dx &=\frac{2 a \sqrt{a+a \sec (c+d x)} \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}+\frac{1}{3} (4 a) \int \frac{\sqrt{a+a \sec (c+d x)}}{\sqrt{\sec (c+d x)}} \, dx\\ &=\frac{8 a^2 \sqrt{\sec (c+d x)} \sin (c+d x)}{3 d \sqrt{a+a \sec (c+d x)}}+\frac{2 a \sqrt{a+a \sec (c+d x)} \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.193369, size = 50, normalized size = 0.63 \[ \frac{2 a (\cos (c+d x)+5) \tan \left (\frac{1}{2} (c+d x)\right ) \sqrt{a (\sec (c+d x)+1)}}{3 d \sqrt{\sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Sec[c + d*x])^(3/2)/Sec[c + d*x]^(3/2),x]

[Out]

(2*a*(5 + Cos[c + d*x])*Sqrt[a*(1 + Sec[c + d*x])]*Tan[(c + d*x)/2])/(3*d*Sqrt[Sec[c + d*x]])

________________________________________________________________________________________

Maple [A]  time = 0.19, size = 71, normalized size = 0.9 \begin{align*} -{\frac{2\,a \left ( \left ( \cos \left ( dx+c \right ) \right ) ^{2}+4\,\cos \left ( dx+c \right ) -5 \right ) \left ( \cos \left ( dx+c \right ) \right ) ^{2}}{3\,d\sin \left ( dx+c \right ) }\sqrt{{\frac{a \left ( \cos \left ( dx+c \right ) +1 \right ) }{\cos \left ( dx+c \right ) }}} \left ( \left ( \cos \left ( dx+c \right ) \right ) ^{-1} \right ) ^{{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sec(d*x+c))^(3/2)/sec(d*x+c)^(3/2),x)

[Out]

-2/3/d*a*(cos(d*x+c)^2+4*cos(d*x+c)-5)*(a*(cos(d*x+c)+1)/cos(d*x+c))^(1/2)*cos(d*x+c)^2*(1/cos(d*x+c))^(3/2)/s
in(d*x+c)

________________________________________________________________________________________

Maxima [A]  time = 2.88006, size = 51, normalized size = 0.65 \begin{align*} \frac{{\left (\sqrt{2} a \sin \left (\frac{3}{2} \, d x + \frac{3}{2} \, c\right ) + 9 \, \sqrt{2} a \sin \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )\right )} \sqrt{a}}{3 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(3/2)/sec(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

1/3*(sqrt(2)*a*sin(3/2*d*x + 3/2*c) + 9*sqrt(2)*a*sin(1/2*d*x + 1/2*c))*sqrt(a)/d

________________________________________________________________________________________

Fricas [A]  time = 1.61669, size = 186, normalized size = 2.35 \begin{align*} \frac{2 \,{\left (a \cos \left (d x + c\right )^{2} + 5 \, a \cos \left (d x + c\right )\right )} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{3 \,{\left (d \cos \left (d x + c\right ) + d\right )} \sqrt{\cos \left (d x + c\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(3/2)/sec(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

2/3*(a*cos(d*x + c)^2 + 5*a*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/((d*cos(d*x + c
) + d)*sqrt(cos(d*x + c)))

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))**(3/2)/sec(d*x+c)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}{\sec \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(3/2)/sec(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate((a*sec(d*x + c) + a)^(3/2)/sec(d*x + c)^(3/2), x)